Archive for January, 2014

Electronic Health Records: Conquering a major "con"

Saturday, January 18th, 2014
The question is how to connect the two.

The question is how to connect the two.

My first electronic medical record encounter was in 1975 at a not-for-profit hospital in California. I could enter orders for my dialysis patients and retrieve lab test results. I thought it was" better than sliced bread." I don't remember any negatives about the system other than not being able to connect to it from the private medical office I shared with another nephrologist. So there were lots of "pros" and no major "cons" as far as I was concerned.

Of course, it wasn't a complete Electronic Health Record (EHR) and I couldn't dictate the results of a physical exam or anything else into the system.

In mid-1988 I became the commander of a small Air Force hospital in Texas that was a test site for the Composite Health Care System (CHCS), a  Department of Defense effort to have a system-wide EHR. During the preceding six months, when I had been the deputy commander, I was aware there was a rudimentary system in our x-ray department, one that let our radiologists dictate a report. But they had to speak slowly, in an absolute monotone, for it to work.

I attended my first CHCS meeting, with the Assistant Secretary of Defense for Health Affairs (ASD/HA) and all three military Surgeons General seated at the front of a large room. CHCS had morphed into an endless series of blah-colored screens that my docs, nurses and other medical personnel could use to retrieve and enter patient data. At that point I thought it was an elephant designed by committee, a prototype that had a long, long way to go before it was a viable EHR.

I was the junior commander in the room, having been a bird colonel for only three years. Many of the others were long-time colonels or one-stars and even, in a few cases, two-star generals/admirals. After a few introductory remarks, the ASD/HA said, "Colonel Springberg, you're the new kid on the block; what do you think of CHCS?

All eyes turned to me and I blurted out, "Frankly, sir, I think it sucks."

Shocked silence for a moment, then he asked, "What do you mean?"

"My docs hate it, sir. It needs to have a touch-screen or a mouse-able interface or be on a Mac with some colorful screens. As it is, there's row after row of green lines of questions that can easily put you to sleep."

I survived that meeting (perhaps just barely) and my own Surgeon General showed up in my office back in Texas a few weeks later. That wasn't unusual, as he fairly frequently came to the base for events at the Medical Service Training Wing and stopped to talk to me on the way. This time I was concerned he'd want to chastise me for my remarks.

"Peter, do you remember that CHCS meeting?" he asked somewhat rhetorically. "Do you remember what you said?"

My heart skipped a beat or two.

"Well I agree with you. I just can't say those kinds of things. Keep it up!"

Twenty-plus years later, DOD was still using a version of CHCS for healthcare administrative purposes and had something called AHLTA (the Armed Forces Health Longitudinal Technology Application; DOD does love acronyms) as its EHR.

Then in May, 2013, the Secretary of Defense announced a plan to replace AHLTA with a commercial EHR with a short-term goal of coordinating with Veterans Affairs to "develop data federation, presentation and enhanced interoperability."

After I looked up the term "data federation," it made sense. We're talking about software allowing an organization to use data from a variety of sources in a number of places with the data itself remaining "in the cloud."

If you're speaking about medical records for people who move around the globe and often later stay in an allied system (the VA) after they retire, it would be great to be able to access all or part of an EHR without the need to move physical patient charts.

Then how do they find my old medical records?

Then how do they find my old medical records?

I've got part of my old military health record sitting on a file cabinet in this room, but what I really would like is for all my records to be accessible to any doc I see. whether it's my own ex-Air Force Family Practice physician here in Fort Collins, someone at a VA clinic I might happen to stop at on a trip, or a civilian doctor in Canada or Europe I see in an emergency room

My left shoulder has been painful for six weeks. I saw my physician, got a referral for physical therapy and drove nearly twenty miles to see the PT who works for the local hospital chain (now a part of the University of Colorado) and was moved sometime back to an outlying location. She's really good, so I became one of her groupies, patients who, when they need physical therapy, decided they'd follow the PT they liked best.

If I were still on active duty (it's been nearly sixteen years since I retired), she might have been sent to Italy or Guam. But twenty miles was doable.

After her usual thorough exam she started entering data into a computer. Epic, the EHR used by University of Colorado Health (UCH) meets the 2010 Patient Protection and Affordable Care Act standards, was adopted at the main UCH hospital in Denver in 2012, reached the affiliated northern Colorado hospitals and clinics in July 2013, and will extend to other UCH locations by mid-2014. So if I'm seeing a practitioner at any UCH location, they can pull up my EHR onscreen. 

There's now a non-profit Healthcare Information Management Systems Society (HIMSS) an organization that was formed with goals to improve healthcare through information technology. As I thought about the issue on the way to the gym yesterday, I realized one problem is defining who can see my medical data.

Medical data privacy is crucial to many and my first thoughts along this line were rapidly discarded. I don't want Joe Ripoff in Otherplace, Elsewhere, to easily access my records and couldn't initially think of a way  that all medical personnel anywhere could have easy entry to my EHR without some hacker also being able to duplicate the necessary passcode. And if I carried a card in my wallet, it could be pick-pocketed. Even if I had my own personal code, I might forget it or be unconscious.

Then I had an idea that could safeguard my medical record while allowing any practitioner I see while traveling to gain entry to all my stored records. It turned out not to be a new idea at all; others have suggested it for the last fifteen or so years.

My dog has an implanted microchip so if he's lost someone can scan him and find who he belongs to. I would be willing to have such a chip in, for instance the flesh of my arm, modified to contain my entire EHR.

If that technology would allow a medical team anywhere to scan my arm and then retrieve my medical data, it might be worth considering.

This sounded like science fiction, but apparently it's possible and it also caused a furor. I Googled the idea and found that Snopes.com had debunked the rumor that the Affordable Care Act mandated such microchips be implanted in everyone. Supposedly, according to the canard, the chip, about the size of a grain of rice, would also link to your bank account (It's not true.) However, an-EHR-microchip, while conceivable, has been resisted by some religious groups and by many who are concerned that they would lead to Big Brother government being able to track all of our movements. Some have even said the data would be accessible to anyone with a scanner.

I think those objections, except for religious ones, are a stretch. And the data could be encrypted.

So my level of paranoia on the issue being quite low, I'm ready for a microchip.

It should absolutely be your choice, of course, whether you get one or not.

 

 

 

 

 

 

 

 

 

 

 

 

 

Food Safety Issues--Part one: China

Thursday, January 9th, 2014

Two recent articles in The New York Times caught my attention and highlighted a marked disparity between China, the most populous country in the world, and the United States, third in the global population list, but with a markedly differing approach to many problems.

To begin with, I knew who was in first, second and third place for the greatest number of residents (citizens and others), but was curious to see who followed so I Googled "countries with the largest population" and found the numbers on an unexpected website (I suppose I shouldn't have been surprised). As of July, 2013, the CIA's listing on their webpage, The World Factbook, says China has a hair under 1.35 billion people, India has 1.22 billion, the entire twenty-eight-country European Union (that number of members is also as of July, 2013)  has just over half a billion and America has 316 million. They are followed by Indonesia at 251 million, Brazil slightly over 200 million and Pakistan at 193 million. The other countries with over 100 million inhabitants are Nigeria (175 million), Bangladesh (163 million), Russia at 143 million, Japan with 127 million, Mexico with 116 million and the Philippines with nearly 106 million.

When it comes to land area, Russia clearly leads the pack with over 6.6 million square miles; Canada is second with 3.8 million square miles and somewhat surprisingly to me the United States is third with 3.7 million, slightly over  China's size (Alaska with 586 thousand square miles of land is the reason). But China's population density (365 per square mile) is more than four times that of America's (84 per square mile).

A significant question is what information is available to people in various countries and what influence do they people on decisions that may affect their health and that of their children. I'm going to stick to China and the United States, but I think I could probably extrapolate to a number of others in the over 100 million population group.

China needs a "Save Our Soil" stamp

China needs a "Save Our Soil" stamp

The NYT article about China, written by Edward Wong, was titled "Pollution Rising, Chinese Fear for Soil and Food" It's datelined from a village in Hunan Province, the breadbasket of China. Crops raised in the eastern and southern parts of the country include rice, yams, carrots, turnips, cabbage and lotus, while millet, corn and soybeans predominate in northern and northeast areas. Other major crops include sorghum, barley, tea, cotton and peanuts.

The Hunan village mentioned in the story grows rice, sweet potatoes, turnips, carrots and cabbage. The problem is the fields on which these crops are produced are far too close to industrial plants; many factories, smelters and mines surround them and the wastewater from those plants is toxic. In May, 2013, officials in Guangdong Province, in the far south, said they had discovered excessive levels of cadmium in 155 batches of rice collected from markets, restaurants and storehouses. Of those well over half were from Hunan Province.

On December 30, 2013, the Chinese Vice Minister of Land and resources, Wang Shiyuan, said an area about the size of Belgium, (or Maryland, about 12,000 square miles) but comprising only 2% of China's 135 million hectares (roughly 520,000 square miles) of arable land, was too polluted for growing crops safely. And early in 2013 Wang's ministry had commented that a five-year, $1 billion soil-pollution survey's resulted were being held as a "state secret." This came out in Bloomberg News online along with a comment from Minister Wang, "Farming on the land with medium-to-heavy pollution should be discontinued."

One-sixth of China's rice is produced in Hunan Province, but so is much of its cadmium, chromium, lead and non-metal arsenic.

A Chinese official admitted the pollution was due to intense industrial development, but also mentioned three other factors I thought were much less likely to be involved (chemical fertilizers, mechanized farming and household garbage).

Cadmium's effects have been studied in detail in those exposed to inhalation of the metal: they include lung, kidney, bone and reproductive changes. Ingested cadmium is exceedingly toxic to those same systems of the body.

Although the total arable land in China has increased in the last survey, the per capita figure has shrunk secondary to both population growth and a quickening pace of urbanization. Nearly eleven thousand square miles of previous farmland has been converted into portion of cities since a 1996 survey. China's per capita arable land, 135.4 million hectares at the end of 2012 , translates into 0.101 hectares per person, far under the world's average of 0.225. The redline figure for China at its present population is 120 million hectares reserved for agriculture; below that, even at their present population, they would be unable to produce enough food crops for all.

But toxic chemicals aren't the only Chinese food issue. A January 2, 2014 BBC article, "Donkey Meat Recalled in China," It's apparently a common snack food there, but the Wall-Mart corporation said that government testing revealed that two of its stores in an eastern area of the country (Shandong province) had sold product contaminated with fox meat.

Wall-Mart plans to reimburse customers who purchased the donkey meat and upgrade its own DNA testing.

Chinese consumer confidence has plummeted since the melamine scandal of 2007-2008. Initially pet food contaminated with an industrial compound and exported to the United caused kidney failure in dogs and cats. Then infant formula, frozen yogurt and one brand of a canned coffee drink in China itself caused six infant deaths and sickened at least 300,000 people. A February 2013 Huffington Post article gave a followup on a theory of why so few died. About 1% of humans have a gut bacteria that metabolizes melamine into a more toxic chemical. So, if that concept is correct, China was very lucky.

Think of the numbers sickened and killed if that microbial species had been present in most of their population.

There is some very good news coming from China as well, however.  The world's largest genomics corporation, started as the Beijing Genomics Institute in 1999 and now called B.G.I., is carrying on major projects to unravel the genetic structure of thousands of economically and scientifically important animals and plants with one goal being applying the knowledge gained to better treat or even prevent diseases.. A January 6, 2014 article in The New Yorker titled "The Gene Factory" featured B.G.I. and our former Chinese graduate student (now with a Pharmacology PhD from the University of Colorado) spoke highly of the work of one of its leading figures.

Maybe China can move this way.

Maybe China can move this way.

B.G.I. is collaborating with the Bill and Melinda Gates Foundation and major American universities to increase global food production by ten percent. It's is also sequencing the genes of rice, cucumbers and chickpeas.

So there's both bad and some good food safety news coming from the world's most populous country. But the majority of its people are kept in the dark as to the extent of the problems.

There's hope in sight: in early 2013 the Chinese State Council set a 2015 goal for measuring soil pollution comprehensively and establishing initial programs for treating those injured by unsafe agricultural products.

Hopefully they will let their citizens know the results of the survey.